首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   17篇
  国内免费   11篇
测绘学   9篇
大气科学   40篇
地球物理   112篇
地质学   142篇
海洋学   157篇
天文学   98篇
综合类   7篇
自然地理   25篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   18篇
  2016年   24篇
  2015年   9篇
  2014年   18篇
  2013年   28篇
  2012年   14篇
  2011年   24篇
  2010年   16篇
  2009年   28篇
  2008年   31篇
  2007年   40篇
  2006年   29篇
  2005年   27篇
  2004年   32篇
  2003年   20篇
  2002年   18篇
  2001年   15篇
  2000年   18篇
  1999年   15篇
  1998年   16篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   11篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1983年   13篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1978年   5篇
  1976年   5篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有590条查询结果,搜索用时 15 毫秒
91.
Ground-penetrating radar (GPR) has become an important geophysical tool which can provide a wealth of interpretive information about the vertical profile of discontinuous permafrost. A GPR investigation was conducted in October 2006 at the Nalaikh site at the southern boundary of the Siberian discontinuous permafrost region in Mongolia. GPR data were collected along four 100-m-long profiles to identify the location of the permafrost body, which included an in situ drilling borehole and analysis of temperature observations and soil water content measurements from boreholes. The GPR interpretation results indicated that the thickness of discontinuous permafrost at the study site was only 1.9–3.0 m and the permafrost is vulnerable to climate change. The soil temperature and soil water content data demonstrate the precision of GPR image interpretation. This case demonstrated that GPR is well suited for mapping the internal structure of discontinuous permafrost with relatively low soil water content.  相似文献   
92.
Respiration, ammonia excretion and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 16–43 pelagic decapods from epipelagic through abyssopelagic zones of the world’s oceans were compiled. For respiration, the independent variables including body dry mass, habitat temperature and sampling depth were all significant predictors of the empirical regression model, whereas the former two variables were significant predictors of the theoretical regression model. For ammonia excretion, body dry mass and habitat temperature were significant predictors of both regression models. Overall, these variables accounted for 68–87 % of the variance in the data. Atomic O:N ratios (respiration:ammonia excretion) ranged from 9.1 to 91 (median 16.4), and no appreciable effects of the three variables were detected. Body composition components were not significantly affected by the three variables, except positive effects of habitat temperature on ash and negative effects of sampling depth on N composition. As judged by C:N ratios, protein was considered to be the major organic component of most pelagic decapods. Some pelagic decapods from >500 m depth exhibited high C:N ratios (8.6–10.2), suggesting a deposition of lipids in the body. Comparison of the present results with global bathymetric models of euphausiids and mysids revealed great similarities among these pelagic crustacean taxa characterized by common behavioral and morphological features such as active swimming, developed compound eyes and respiratory gill organ.  相似文献   
93.
Vesicomyid bivalves have a substantial biomass in deep-sea chemosynthetic biological communities in the Pacific. Using a novel multiplex-PCR (mPCR) method to identify the co-occurring vesicomyids in Sagami Bay, we analyzed the distribution of Calyptogena okutanii and Calyptogena soyoae along environmental gradients. All the known distributions of C. okutanii indicated the different preferences in salinity and temperature to those of C. soyoae, and in Sagami Bay, depth seemed to be an important environmental factor, too. Although the concentration of hydrogen sulfide in sediment was not examined, our results showed that the distributions of these two Calyptogena clams were affected by salinity and temperature.  相似文献   
94.
To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes to the magnetic equator. The daytime ionospheric equivalent current during the storm main phase showed that twin-vortex ionospheric currents driven by the Region 1 field-aligned currents (R1 FACs) are intensified significantly and expand to the low-latitude region of-30~ magnetic latitude. Centers of the currents were located around 70~ and 65~ in the morning and afternoon, respectively. Corresponding to intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equa- tor. During the recovery phase, the daytime equivalent current showed that two new pairs of twin vortices, which are different from two-cell ionospheric currents driven by the R1 FACs, appear in the polar cap and mid latitude. The former led to enhanced north- ward Bz (NBZ) FACs driven by lobe reconnection tailward of the cusps, owing to the northward interplanetary magnetic field (IMF). The latter was generated by enhanced Region 2 field-aligned currents (R2 FACs). Associated with these magnetic field variations in the mid-latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature, produced by the westward equatorial electrojet current caused by the dusk-to-dawn electric field.  相似文献   
95.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   
96.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   
97.
We studied the contributions of plagioclase, clinopyroxene, and amphibole to the P‐wave velocity properties of gabbroic mylonites of the Godzilla Megamullion (site KH07‐02‐D18) in the Parece Vela Rift of the central Parece Vela Basin, Philippine Sea, based on their crystal‐preferred orientations (CPOs), mineral modes, and elastic constants and densities of single crystals. The gabbroic mylonites have been classified into three types based on their microstructures and temperature conditions: HT1, HT2 and medium‐temperature (MT) mylonites. The P‐wave velocity properties of the HT1 mylonite are dominantly influenced by plagioclase CPOs. Secondary amphibole occurred after deformation in the HT1 mylonite, so that its effect on P‐wave velocity anisotropy is minimal due to weak CPOs. Although the HT2 mylonite developed deformation microstructures in the three minerals, the P‐wave velocity properties of the HT2 mylonite are essentially isotropic, resulting from the destructive interference of different P‐wave velocity anisotropy patterns produced by the distinct CPOs of the three constituent minerals (i.e., plagioclase, clinopyroxene, and amphibole). The P‐wave velocity properties of the MT mylonite are influenced mainly by amphibole CPOs, whereas the effect of plagioclase CPOs on P‐wave velocity anisotropy becomes very small with a decrease in the intensity of plagioclase CPOs. As a result, the gabbroic mylonites tend to have weak P‐wave velocity anisotropy in seismic velocity, although their constituent minerals show distinct CPOs. Such weakness in the whole‐rock P‐wave velocity anisotropy could result from the destructive contributions of the different mineral CPOs with respect to the structural framework (foliation and lineation). These results show that amphibole has a high potential for P‐wave velocity anisotropy by aligning both crystallographically and dimensionally during deformation in the hydrous oceanic crust. The results also suggest that the effect of a hydrous phase on P‐wave velocity anisotropy within the detachment shear zone in a slow‐spreading oceanic crust varies depending on the degree of deformation and on the timing of hydrothermal activity.  相似文献   
98.
The Changning-Menglian Belt in West Yunnan, Southwest China is well-known as a closed remnant of the Paleo-Tethys Ocean in East Asia (Wu et al., 1995; Liu et al., 1996). It is delineated to the east with the Lincang Massif by the Changning-Shuangjiang Fault and to the west with the Baoshan Block by the Kejie-Nandinghe Fault, and is generally subdivided into three zones: east, central, and west zones. In the central zone, various kinds of oceanic rocks such as harzburgite, cumulate websterite, gabbro, both mid-oceanic ridge basalt and oceanic island basalt, Devonian-Triassic radiolarian chert, and Carbonifer-ous-Permian massive and huge carbonates with basaltic effusives as their pedestal are exposed (Liu et al., 1991, 1996; Wu et al., 1995; Ueno et al., 2003). These Central zone rocks are now interpreted to have been emplaced as nappes structurally overlying the East and West zones, which are considered as consisting mainly of passive margin sediments of the Baoshan Block (Wu, 1991; Ueno et al., 2003).  相似文献   
99.
An estimated 3.5 ± 0.7 × 1015 Bq of 137Cs is thought to have been discharged into the ocean following the melt down at Fukushima Dai-ichi Nuclear Power Plant (F1NPP). While efforts have been made to monitor seafloor radiation levels, the sampling techniques used cannot capture the continuous distribution of radionuclides. In this work, we apply in situ measurement techniques using a towed gamma ray spectrometer to map the continuous distribution of 137Cs on the seafloor within 20 km of the F1NPP. The results reveal the existence of local 137Cs anomalies, with levels of 137Cs an order of magnitude higher than the surrounding seafloors. The sizes of the anomalies mapped in this work range from a few meters to a few hundreds of meters in length, and it is demonstrated that the distribution of these anomalies is strongly influenced by meter scale features of the terrain.  相似文献   
100.
Various image processing techniques were experimented with in this study to evaluate their efficiency for geological mapping in the Eljufra area of northwest Libya. Remote sensing data including multi-spectral optical Landsat Enhanced Thematic Mapper (ETM+), Synthetic Aperture Radar (ERS-2 SAR) and Digital Elevation Models (DEMs) extracted from the Shuttle Radar Topography Mission (SRTM) data were used to trace different lithological units as well as extracting geological lineaments in the study area. The study area is located in an arid environment mostly devoid of any vegetation. Most lithological and structural units are distinguishable based on their topographic form and spectral properties. Fusion of ETM+ and ERS-2 images was experimented with to further identify lithological units. Shaded relief techniques were implemented to enhance terrain perspective views and to extract geological lineaments. The results discriminated different rock units and modified formation boundaries and revealed new geological lineaments. Nine rock units were identified and plotted in the new geological map defined by the new boundaries. The dominant lineaments tend to run in the NNW-SSE and NNE-SSW directions. Analysis and interpretation of the lineaments provided information about the tectonic evolution of the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号